LogoLogo
Continuum WebsiteContinuum ApplicationsContinuum KnowledgeAxolotl Platform
  • TensorRT-LLM
  • The TensorRT-LLM Process
  • Performance
  • Virtual Machine Creation
  • CUDA Introduction
    • CUDA Architecture
    • Stream Multiprocessors: The Heart of GPU Computing
    • Pre Installation
    • Compatibility Assessment
    • NVCC: The NVIDIA CUDA Compiler
    • Installing Cuda
    • Installing the NVIDIA Container Toolkit
    • CUDA and bandwidth
    • Tensor Cores
  • Building TensorRT-LLM
    • Building from Source
    • TensorRT-LLM Dockerfile
      • Base Image
      • install_base.sh
      • install_cmake.sh
      • install_tensorrt.sh
      • install_pytorch.sh
      • requirements.txt
      • build_wheel.py
      • setup.py
      • Docker Makefile
      • Persistence
      • Running with persistent volumes
  • TensorRT-LLM Architecture and Process
    • The TensorRT-LLM process
    • INetworkDefinition
    • Model Definition
    • Compilation
    • Runtime Engine
    • Weight Bindings
    • Model Configuration
  • TensorRT-LLM build workflow
    • TensorRT-LLM build workflow - process
  • CUDA Graphs
    • Experimentation with CUDA Graphs
  • TensorRT-LLM Libraries
    • tensorrt_llm folders
    • tensorrt_llm/builder.py
    • tensorrt_llm/network.py
    • tensorrt_llm/module.py
    • top_model_mixin.py
    • trt-llm build command
    • trtllm-build CLI configurations
  • LLama2 installation
    • Converting Checkpoints
      • Checkpoint List - Arguments
      • Examples of running the convert_checkpoint.py script
      • convert_checkpoint examples
      • Checkpoint Script Arguments
      • checkpoint configuration file
      • run_convert_checkpoint.py script
    • LLama2 Files Analysis
    • TensorRT-LLM Build Engine Process
    • TensorRT-LLM Build Process Documentation
    • Build arguments
    • trtllm build configuration file
    • Run the buildconfig file
    • Analysis of the output from build.py
    • LLama3 configurations
    • Proposed checkpoint config file for LLama3
    • Proposed build config file for LLama3
    • run.py for inference
    • Using the models - running Llama
    • generate_int8 function
    • summarize.py script in Llama folder
    • Compiling LLama Models
  • Tasks
  • LLama Model Directory
    • llama/model.py
    • llama/utils.py
    • llama/weight.py
    • llama/convert.py
    • PreTrainedModel class
    • LlamaForCausalLM class
    • PretrainedConfig class
  • TensorRT-LLM Tutorial
  • Tutorial 2 - get inference going
  • examples/run.py
  • examples/utils.py
  • examples/summarize.py
  • The Python API
    • Layers
    • Functionals
    • functional.py
    • tensorrt_llm.functional.embedding
    • tensorrt_llm.functional.gpt_attention
    • tensorrt_llm.functional.layer_norm
    • tensorrt_llm.functional.rms_norm
    • Model
    • Quantization
    • Runtime
    • Runtime Process
  • Transformer Architecture
    • Attention Mechanism
    • Multi Head Attention
    • Positional Encoding
    • Scaled dot-product attention
    • Layer Normalisation
    • Activation Functions
    • Residual Connections
    • Position Wise Feed-Forward Layer
    • Transformer Feed-Forward Layers Are Key-Value Memories
    • KV Cache
      • Efficient Streaming Language Models with Attention Sinks
      • Input QKV tensor
    • General Notes on Model Architecture
  • Best Practices for Tuning the Performance of TensorRT-LLM
    • Optimisation Techniques
    • Batch Manager
    • Alibi
    • Relative Attention Bias
    • Beam Search
    • Rotary Positional Embedding (RoPE)
    • Numerical Precision
    • FP8 Formats for Deep Learning
  • Graph Rewriting
  • Reducing Activation Recomputation in Large Transformer Models
  • Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
  • Numerical Position
  • TensorRT Models
  • Bloom
    • Huggingface Bloom Documentation
  • Runtime
  • Graph Rewriting (GW) module
  • FasterTransfomer Library
  • Dual ABI issues
  • Phi 2.0
  • ONNX
  • Message Passing Interface (MPI)
  • NVIDIA Nsight Systems: A Comprehensive Guide for TensorRT-LLM and Triton Inference Server
  • NCCL
Powered by GitBook
LogoLogo

Continuum - Accelerated Artificial Intelligence

  • Continuum Website
  • Axolotl Platform

Copyright Continuum Labs - 2023

On this page
  • What is a Runtime Engine?
  • Philosophy Behind a Runtime Engine
  • Other Examples of Runtime Engines

Was this helpful?

  1. TensorRT-LLM Architecture and Process

Runtime Engine

What is a Runtime Engine?

A runtime engine is a specialised environment that is responsible for executing a specific type of application or program.

In the context of TensorRT and machine learning, the runtime engine is designed to execute optimised neural network models on NVIDIA GPUs.

This engine takes the optimised computational graph (the model), interprets it, and runs it, leveraging the underlying hardware for high performance.

Philosophy Behind a Runtime Engine

The philosophy behind a runtime engine is to separate the development phase from the execution phase.

During development, you may train a machine learning model using a high-level language and libraries that prioritise ease of use and flexibility. However, the code and environment optimised for development may not be optimised for speed or resource efficiency.

A runtime engine is a production-ready, optimised environment that only contains what is necessary to execute a particular application or task.

It does away with the overheads of development environments, thereby leading to more efficient execution.

The philosophy is about creating a specialised environment that's optimised for one thing: executing the application as fast and as efficiently as possible.

Other Examples of Runtime Engines

Java Virtual Machine (JVM)

It allows Java bytecode to be executed as actions in a virtual machine that simulates the real machine. This enables Java developers to write code that's portable across many platforms yet optimized for execution.

.NET Runtime

Like JVM, but for the Microsoft ecosystem. It allows for the execution of .NET applications, taking the Common Intermediate Language (CIL) code and compiling it Just-In-Time (JIT) for execution.

Python Interpreter

Python code doesn't run natively on the computer's architecture but instead runs within a Python runtime environment, which interprets the Python code and executes it.

Web Browsers' JavaScript Engine

Engines like V8 in Chrome, SpiderMonkey in Firefox, etc., serve as the runtime engines for JavaScript, interpreting and executing code on client machines.

Stream Processing Engines

Tools like Apache Kafka and Spark Streaming have runtime engines optimised for processing data in real-time.

PreviousCompilationNextWeight Bindings

Last updated 1 year ago

Was this helpful?

Page cover image