LogoLogo
Continuum WebsiteContinuum ApplicationsContinuum KnowledgeAxolotl Platform
  • TensorRT-LLM
  • The TensorRT-LLM Process
  • Performance
  • Virtual Machine Creation
  • CUDA Introduction
    • CUDA Architecture
    • Stream Multiprocessors: The Heart of GPU Computing
    • Pre Installation
    • Compatibility Assessment
    • NVCC: The NVIDIA CUDA Compiler
    • Installing Cuda
    • Installing the NVIDIA Container Toolkit
    • CUDA and bandwidth
    • Tensor Cores
  • Building TensorRT-LLM
    • Building from Source
    • TensorRT-LLM Dockerfile
      • Base Image
      • install_base.sh
      • install_cmake.sh
      • install_tensorrt.sh
      • install_pytorch.sh
      • requirements.txt
      • build_wheel.py
      • setup.py
      • Docker Makefile
      • Persistence
      • Running with persistent volumes
  • TensorRT-LLM Architecture and Process
    • The TensorRT-LLM process
    • INetworkDefinition
    • Model Definition
    • Compilation
    • Runtime Engine
    • Weight Bindings
    • Model Configuration
  • TensorRT-LLM build workflow
    • TensorRT-LLM build workflow - process
  • CUDA Graphs
    • Experimentation with CUDA Graphs
  • TensorRT-LLM Libraries
    • tensorrt_llm folders
    • tensorrt_llm/builder.py
    • tensorrt_llm/network.py
    • tensorrt_llm/module.py
    • top_model_mixin.py
    • trt-llm build command
    • trtllm-build CLI configurations
  • LLama2 installation
    • Converting Checkpoints
      • Checkpoint List - Arguments
      • Examples of running the convert_checkpoint.py script
      • convert_checkpoint examples
      • Checkpoint Script Arguments
      • checkpoint configuration file
      • run_convert_checkpoint.py script
    • LLama2 Files Analysis
    • TensorRT-LLM Build Engine Process
    • TensorRT-LLM Build Process Documentation
    • Build arguments
    • trtllm build configuration file
    • Run the buildconfig file
    • Analysis of the output from build.py
    • LLama3 configurations
    • Proposed checkpoint config file for LLama3
    • Proposed build config file for LLama3
    • run.py for inference
    • Using the models - running Llama
    • generate_int8 function
    • summarize.py script in Llama folder
    • Compiling LLama Models
  • Tasks
  • LLama Model Directory
    • llama/model.py
    • llama/utils.py
    • llama/weight.py
    • llama/convert.py
    • PreTrainedModel class
    • LlamaForCausalLM class
    • PretrainedConfig class
  • TensorRT-LLM Tutorial
  • Tutorial 2 - get inference going
  • examples/run.py
  • examples/utils.py
  • examples/summarize.py
  • The Python API
    • Layers
    • Functionals
    • functional.py
    • tensorrt_llm.functional.embedding
    • tensorrt_llm.functional.gpt_attention
    • tensorrt_llm.functional.layer_norm
    • tensorrt_llm.functional.rms_norm
    • Model
    • Quantization
    • Runtime
    • Runtime Process
  • Transformer Architecture
    • Attention Mechanism
    • Multi Head Attention
    • Positional Encoding
    • Scaled dot-product attention
    • Layer Normalisation
    • Activation Functions
    • Residual Connections
    • Position Wise Feed-Forward Layer
    • Transformer Feed-Forward Layers Are Key-Value Memories
    • KV Cache
      • Efficient Streaming Language Models with Attention Sinks
      • Input QKV tensor
    • General Notes on Model Architecture
  • Best Practices for Tuning the Performance of TensorRT-LLM
    • Optimisation Techniques
    • Batch Manager
    • Alibi
    • Relative Attention Bias
    • Beam Search
    • Rotary Positional Embedding (RoPE)
    • Numerical Precision
    • FP8 Formats for Deep Learning
  • Graph Rewriting
  • Reducing Activation Recomputation in Large Transformer Models
  • Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
  • Numerical Position
  • TensorRT Models
  • Bloom
    • Huggingface Bloom Documentation
  • Runtime
  • Graph Rewriting (GW) module
  • FasterTransfomer Library
  • Dual ABI issues
  • Phi 2.0
  • ONNX
  • Message Passing Interface (MPI)
  • NVIDIA Nsight Systems: A Comprehensive Guide for TensorRT-LLM and Triton Inference Server
  • NCCL
Powered by GitBook
LogoLogo

Continuum - Accelerated Artificial Intelligence

  • Continuum Website
  • Axolotl Platform

Copyright Continuum Labs - 2023

On this page

Was this helpful?

  1. CUDA Introduction

Tensor Cores

Tensor Cores are engineered to perform operations in mixed precision.

This means they can compute using a combination of both 16-bit (half precision) and 32-bit (single precision) floating-point formats.

By doing so, they can increase the throughput of mathematical operations, which is critical in AI model training and inference tasks, where the precision requirements can vary.

Dynamic Adaptation for Accuracy

One of the standout features of Tensor Cores is their ability to dynamically adapt their calculations to balance speed and accuracy.

This adaptability is crucial in maintaining the precision of computations in AI models, ensuring that the speedup in processing does not come at the cost of result accuracy.

Performance Acceleration

Tensor Cores significantly boost the performance of AI and HPC workloads.

They are particularly adept at accelerating matrix multiplications and convolutions, which are fundamental operations in deep learning.

This acceleration has led to substantial performance improvements, such as 6X faster training times for transformer networks, which are widely used in natural language processing tasks.

Broad Application Range

The latest generations of Tensor Cores have expanded their capabilities to a wider array of tasks.

While initially focused on deep learning, they now provide performance enhancements across a diverse set of applications in both AI and high performance computing domains.

Key to AI and HPC Workloads

Tensor Cores have become a vital component in the architecture of NVIDIA GPUs, providing acceleration that enables researchers, data scientists, and engineers to push the boundaries in their fields.

They allow for more complex models to be trained and deployed, and for scientific computations to be performed more quickly and efficiently.

In summary, NVIDIA Tensor Cores represent a leap forward in GPU architecture, providing the specialised hardware needed to meet the computational demands of modern AI and HPC workloads, ensuring that NVIDIA's GPUs remain at the forefront of these rapidly advancing fields.

PreviousCUDA and bandwidthNextBuilding TensorRT-LLM

Last updated 1 year ago

Was this helpful?

Tensor Cores in a nutshell
Page cover image